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Abstract 

Background  The distribution of the duration that clinical cases of COVID-19 occupy hospital beds (the ‘length of 
stay’) is a key factor in determining how incident caseloads translate into health system burden. Robust estimation of 
length of stay in real-time requires the use of survival methods that can account for right-censoring induced by yet 
unobserved events in patient progression (e.g. discharge, death). In this study, we estimate in real-time the length 
of stay distributions of hospitalised COVID-19 cases in New South Wales, Australia, comparing estimates between a 
period where Delta was the dominant variant and a subsequent period where Omicron was dominant.

Methods  Using data on the hospital stays of 19,574 individuals who tested positive to COVID-19 prior to admission, 
we performed a competing-risk survival analysis of COVID-19 clinical progression.

Results  During the mixed Omicron-Delta epidemic, we found that the mean length of stay for individuals who were 
discharged directly from ward without an ICU stay was, for age groups 0–39, 40–69 and 70 +, respectively, 2.16 (95% 
CI: 2.12–2.21), 3.93 (95% CI: 3.78–4.07) and 7.61 days (95% CI: 7.31–8.01), compared to 3.60 (95% CI: 3.48–3.81), 5.78 
(95% CI: 5.59–5.99) and 12.31 days (95% CI: 11.75–12.95) across the preceding Delta epidemic (1 July 2021–15 Decem-
ber 2021). We also considered data on the stays of individuals within the Hunter New England Local Health District, 
where it was reported that Omicron was the only circulating variant, and found mean ward-to-discharge length of 
stays of 2.05 (95% CI: 1.80–2.30), 2.92 (95% CI: 2.50–3.67) and 6.02 days (95% CI: 4.91–7.01) for the same age groups.

Conclusions  Hospital length of stay was substantially reduced across all clinical pathways during a mixed Omicron-
Delta epidemic compared to a prior Delta epidemic, contributing to a lessened health system burden despite a 
greatly increased infection burden. Our results demonstrate the utility of survival analysis in producing real-time 
estimates of hospital length of stay for assisting in situational assessment and planning of the COVID-19 response.
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Background
The state of New South Wales (NSW), Australia, 
employed a broadly successful suppression strategy 
against COVID-19 for the early period of the pandemic, 
with relatively low case incidence prior to an outbreak 
of the Delta variant of SARS-CoV-2 (PANGO lineage 
B.1.617.2) in June 2021. This Delta epidemic grew sub-
stantially despite stepped escalation of public health 
and social measures, supported by intensive test-trace-
isolate-quarantine measures. Cases totalled to 53,851 
notifications across a two month period of August and 
September 2021, with a peak in hospital occupancy of 
1,268 beds on 21 September. Subsequently, daily cases 
continued to decline, reaching a plateau in the low hun-
dreds by late-October 2021 as the effective reproduction 
number stabilised below 1—in part due to substantial 
vaccination uptake [1].

The SARS-CoV-2 Omicron variant (lineage BA.1) was 
first identified in the New South Wales population on 
28 November 2021 [2–4], with significant transmission 
including super-spreading events occurring in the follow-
ing four weeks [5, 6]. Notified COVID-19 cases contin-
ued to increase sharply, from 288 on 1 December 2021 
up to 2250 on 15 December. Over the period of 10–24 
January, Omicron represented 94% of sequenced cases in 
Australia [3, 7]. A total of 826,942 case notifications were 
made across a two month period from December 2021 
through January 2022, which translated into a peak hos-
pital occupancy of 2943 reported on 25 January. Figure 1 
shows case notifications and the reported ward and ICU 
occupancy through the study periods by age group.

Robust estimates of the hospital length of stay are 
essential to understanding the impact of disease on hos-
pital burden, and thus to support decision making. Con-
ducting such analyses in real-time, particularly during 
early stages of disease emergence (including novel vari-
ants), is paramount for providing up-to-date and timely 
advice for planning. Given the nature of a patients pro-
gression through the hospital system, such real-time 
analyses will likely consist of some patients who are still 
in the hospital, where their next transition (e.g., dis-
charge, transfer to ICU, death), and the time at which it 
will occur, are as yet unknown. Generating robust esti-
mates of the length of stay and transition probabilities 
in the presence of this right-censoring requires appro-
priate statistical methods, designed to account for such 
occurrences.

Using data available as of 7 February 2022, we exam-
ined the length of stay distributions of hospitalised 
COVID-19 cases in NSW in two periods: the Delta 
only epidemic (1 July 2021–14 December 2021) and 
the mixed Omicron and Delta epidemic (15 Decem-
ber 2021–7 February 2022) to estimate the reduction in 

hospital length of stay during these periods. For the latter 
period, we further examined length of stay for a subset 
of cases hospitalised in the Hunter New England Local 
Health District of NSW where Omicron was reportedly 
the dominant, if not only, circulating variant. These time 
windows were chosen to characterise the outbreaks of 
Delta and Omicron variants in the absence of sufficient 
patient-level variant data. We performed an age-specific 
competing-risk survival analysis using a compartmen-
tal model of COVID-19 clinical progression, and report 
parameters for estimated length of stay distributions 
and corresponding summary statistics. This framework, 
which could fully utilise the censored data available at the 
time, allowed for our results to inform clinical forecasting 
efforts and policy decision making in real-time.

Methods
Data
Episode level hospital stay data of COVID-19 patients 
was provided by the NSW Ministry of Health extracted 
from the Patient Flow System [8]. Each datum consists 
of a singular episode within a ward with associated dates 
and times of admission and discharge. In order to pro-
vide reliable estimates of the length of stay of patients, 
we performed several filtering steps to the data prior to 
fitting the multi-state model. Where an individual had 
been admitted to the intensive care unit (ICU), the ini-
tial and final known date and time were available in 
the data, alongside a total duration within ICU (which 
excluded any periods of ward stay between these initial 
and final known dates, and may be indicative of readmis-
sion to ICU). Where the recorded duration in ICU was 
less than that indicated by the admission and discharge 
dates and times (which differed in only approximately 
6% of admissions), we assumed that the additional time 
outside the ICU contributed to the post-ICU ward stay. 
This ensured—within the limitations of the compartmen-
tal model—that any ward stay that occurred during the 
period from a patient’s initial to final ICU date would not 
contribute to our estimates of ICU length of stay.

In addition, the data contained the date of symptom 
onset and age for each patient. As we did not have access 
to information on each individual’s vaccination sta-
tus, previous SARS-CoV-2 infections, comorbidities, or 
treatments received, we were not able to investigate the 
potential effects of these factors in our analysis.

As an individual could have numerous episodes across 
multiple wards (e.g. representing transfer between dif-
ferent wards), episodes were concatenated to produce a 
single stay, where an individual would be assumed to be 
in hospital from the time of their earliest episode’s admis-
sion until the time of their latest episode’s discharge. At 
this stage, individuals were excluded from analysis where 
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any two of their consecutive episodes were separated by 
at least 48 hours outside of the hospital system (n = 619, 
1442 and 85 for Delta, mixed Omicron-Delta and HNE 
Omicron epidemic periods respectively; Fig. 2). This fil-
tering ensured that all cases included were valid under 
the single-stay assumption of the compartmental model.

Cases were removed from analysis where symp-
tom onset was recorded to have occurred later than 
their earliest admission to hospital, given that that 
such infections were likely to have occurred within 
the hospital (n = 589, 1618 and 107 for Delta, mixed 
Omicron-Delta and HNE Omicron epidemic periods 
respectively; Fig.  2). Although such within hospital 

Fig. 1  Number of COVID-19 cases by notification date and count of ward and ICU beds occupied by COVID-19 patients across the New South 
Wales hospital system. Case notification data is via Data.NSW and the NSW Ministry of Health [34, 35], hospital occupancy data via NSW Ministry 
of Health Patient Flow System [8]. The number of notified cases may differ from counts reported at that date where later deduplication or 
reclassification of cases has been performed. Plotted data ranges from 1 July 2021 to 15 February 2022, with the dashed vertical line indicating the 
end date of the Delta epidemic period/start date of the mixed Omicron-Delta epidemic period for the purposes of this analysis



Page 4 of 12Tobin et al. BMC Infectious Diseases           (2023) 23:28 

infections could be equally likely to progress to a clini-
cally severe state, the lack of differentiation in COVID-
19 severity available to our analysis required the 
removal of these cases. A sensitivity analysis was per-
formed to confirm that estimated lengths of stay were 
robust to this filtering assumption (Additional file  1: 
Fig. S4).

Individuals with a total hospital stay duration of greater 
than 120 days were removed from analysis (n = 9, 0 and 0 
for Delta, mixed Omicron-Delta and HNE Omicron epi-
demic periods respectively; Fig. 2) as these were expected 
to be more likely to be incidental infections, with this 
assumption validated by examination of the ward and 
sub-ward they were recorded as occupying. Furthermore, 
it was expected that such substantial stay durations (even 
in the case of them being true sequelae of infection) 
would have a disproportionate effect in the fitting of the 
parametric distributions to length of stay.

Multi‑state survival model
We performed an age-specific competing-risk survival 
analysis using a compartmental model of COVID-19 
clinical progression (Fig.  3). This model framework has 

been used for similarly characterising hospital demand 
for other patients infected with other SARS-CoV-2 vari-
ants [9, 10] and has been shown to produce reliable esti-
mates of length of stay during an epidemic [11, 12].

At the time of analysis (data up to 7 February 2022), 
11% of individuals in the mixed Omicron and Delta epi-
demic period data had not yet been observed to have an 
outcome (e.g. at the ward stage, individuals who have 
been admitted and not yet been discharged, transferred 
to ICU or died). If this censoring was not appropriately 
considered in the analysis, estimates would be biased 
down by an over-representation of individual’s with a 
shorter length of stay [11]. We considered each branch-
ing step in the clinical pathway model as a set of com-
peting risks in a multi-state survival model to account 
for this censoring. For example, consider admission to 
the ward upon presenting to the hospital: individuals 
can transition from ward-to-discharge, ward-to-death 
or ward-to-ICU. Individuals in the data who were yet 
to be observed following any of these were then con-
sidered to be censored. We utilised a mixture distri-
bution framework, which estimates a multinomial 
distribution describing the probability that each given 

Fig. 2  Data inclusion flowchart, where n d , n m and n h is the number of individuals in the Delta epidemic period, mixed Omicron-Delta epidemic 
period and Omicron Hunter New England epidemic period analysis respectively. Note that the individuals included in the Omicron Hunter New 
England analysis are also included in the mixed Omicron-Delta analysis
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transition will occur, then conditional on each prob-
ability of transition, subsequently estimates the corre-
sponding parametric distribution describing the length 
of stay [13]. This competing-risk approach produces 
time-to-event and transition probability results that are 
more straightforward to interpret and to utilise in fur-
ther modelling work in comparison to the more typical 
cause-specific hazards approach to analysing multi-
state survival data [12, 14].

Model estimates were produced using the flexsurv 
package [14] in R [15], with mixture distribution fits 
produced across each compartment (ward, ICU, post-
ICU-ward). Estimates were stratified by age groups as 
appropriate to the sample size available for fitting (i.e., 
broader age grouping used where sample size was too 
low to produce reliable estimates). The distributions of 
lengths of stay were modelled as gamma distributions 
across all transitions, with shape and rate parameters 
varying by age group in the ward compartment, but with 
only the shape parameter varying by age group in the 
ICU and post-ICU-ward compartments (due to limited 
sample size). To improve model fit for the ward-to-death 
and post-ICU-to-death pathways, fixed probabilities 
of transition were specified according to the non-para-
metric Aalen-Johansen estimates. Cumulative survival 
probability plots were produced across each pathway, 
comparing the parametric gamma distribution fits with 

non-parametric Aalen-Johansen estimates to visually 
assess goodness-of-fit (Additional file 1: Figs. S2, S3).

To evaluate the performance of the real-time estima-
tion process, we performed two additional analyses: (1) 
‘retrospective’ length of stay estimates were produced 
using a later data extract (29 August 2022 compared to 
7 February 2022), by which time all individuals admitted 
during the mixed Omicron-Delta and Omicron HNE epi-
demic periods had complete observations and (2) ‘naive’ 
length of stay estimates were produced using data as at 7 
February, removing any individuals with censored obser-
vations. As such, the first analysis allows us to compare 
the length of stay estimates for these now fully-observed 
patients against the real-time estimates which had as 
yet unobserved events and event times in the data. The 
second analysis allows us to demonstrate the benefit of 
incorporating censored observations in an analysis of the 
hospital length of stay. For each of these analyses, dis-
tribution fits were produced with the fitdistrplus R 
package [16].

Results
We estimated that the mean length of stay for patients 
hospitalised during the mixed Omicron and Delta epi-
demic period (15 December 2021–7 February 2022) was 
reduced by a factor of approximately half across most 
clinical pathways compared to the Delta-only period (1 
July 2021–14 December 2021) (Fig. 4, Table 1). Figure 4 

Fig. 3  Compartmental model of COVID-19 clinical progression, with length of stay time distributions to be estimated across model transitions 
displayed in blue
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shows that the estimated mean lengths of stay across 
all age groups and transitions were shorter again when 
restricting the analysis to cases hospitalised within the 
Hunter New England local health district (LHD), where it 
was reported that Omicron was almost certainly the only 
circulating variant. As has been observed previously, the 
increase in mean length of stay by age is present for each 
period for stays in the ward (e.g., [10]).

Additional file 1: Table S1 contains the estimated mean 
length of stay and upper 90th-percentiles (with 95% con-
fidence intervals) for each transition by age group and 
during each of the Delta, mixed Omicron-Delta and 
Omicron epidemics. Additional file  1: Table  S1 reports 
the corresponding scale and shape parameters, the dis-
tribution medians, their 95% confidence intervals, the 
correlation between the parameter estimates, and prob-
abilities of transitions between model compartments. 
Additional file 1: Fig. S1 further demonstrates the corre-
lation between bootstrapped shape and scale parameter 
estimates.

The probabilities reported in Additional file 1: Table S1 
are estimated as described above, and are not adjusted 
for comorbidities, vaccination status, prior infection 
with SARS-CoV-2, sex, or other variables associated with 
severity of disease (e.g., [17, 18]). These are estimates of 
the observed transition probabilities during the mixed 

Omicron-Delta epidemic in the largely previously unin-
fected study population over a specific time period—they 
do not represent a formal severity analysis. We cau-
tion against generalising these values to other settings, 
particularly with different demographics, vaccination 
coverage, models of clinical care, or prevalence of comor-
bidities, or assuming that these probabilities remain con-
stant in other time-periods in the study population.

Figure 5 shows the estimated length of stay distribu-
tions compared to the non-parametric Aalen-Johansen 
estimates. These figures indicate that the model pro-
vides a reasonable fit to the data. The change in scale 
(y-axis) indicates the probability of discharge directly 
from ward for all age groups is higher for the Omicron-
Delta and Omicron periods, compared to the Delta 
period. Conversely, the probability of admission to ICU 
from ward is substantially lower for all age groups in 
the Omicron-Delta and Omicron periods, compared 
to the Delta period. The probabilities of admission to 
ward following ICU are similar across each age group, 
though note that these estimates are based on small 
numbers for the Omicron period.

The sensitivity analysis shown in Additional file 1: Fig. 
S4 indicates that the estimated mean lengths of stay are 
robust to the data filtering steps implemented. The only 
differences of note were in the 70+ age group for the 

Fig. 4  Modelled mean length of stays for the ward-to-discharge, ward-to-ICU and ICU-to-post-ICU pathways. Means and 95% confidence intervals 
are shown. Note that the y-axis differs between panels. Delta estimates are produced over individuals admitted to hospital between 1 July 2021 and 
14 December 2021. Omicron and mixed Omicron-Delta estimates are produced over individuals admitted to hospital between 15 December 2021 
and 7 February 2022. Length of stay estimates for the ICU pathway do not include patients who are recorded as having been discharged directly 
from the ICU (i.e. not including the direct ICU-to-discharge pathway). Estimates from the Hunter New England Omicron dataset are not displayed 
where sample size was insufficient to produce a model fit
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ward-to-discharge pathway during the Delta period. 
Filtering individuals with symptoms after admission 
results in a substantial reduction in mean length of stay 
for this age group, from approximately 20 to 12.5 days. 
This is suggestive of a number of individuals in this age 
group having long hospital stays with infection inciden-
tal to their stay, which our multi-state model does not 
consider.

Figure  6 shows the retrospective and naive estimates 
of the length of stay during the mixed Omicron-Delta 

period, compared to the real-time estimates. The real-
time estimated mean lengths of stay for the Omicron-
Delta epidemic period were estimated accurately (i.e., 
compared to the retrospective estimates), with only slight 
differences. The most substantial difference can be noted 
in the ward-to-discharge pathways, where the estimated 
mean length of stay was approximately 5–10% greater in 
the retrospective estimates, particularly in the 70+ age 
group. These underestimates of the mean length of stay 
suggest that our real-time analyses did not completely 

Fig. 5  Cumulative survival probabilities of individuals in the ward-to-discharge, ward-to-ICU and ICU-to-post-ICU pathways, across epidemic 
periods and age groups. Solid lines represent observed data via Aalen-Johansen non-parametric estimates. Dashed lines and shaded regions 
represent the fit mixture distribution model means and 95% confidence intervals respectively. Note that y- and x-axis extents differ across both 
pathways and age groups. Delta estimates are produced over individuals admitted to hospital between 1 July 2021 and 14 December 2021, 
Omicron and mixed Omicron-Delta estimates are produced over individuals admitted to hospital between 15 December 2021 and 7 February 2022. 
Estimates for the ICU-to-post-ICU pathway could not be produced from the Hunter New England Omicron epidemic in the ward-to-ICU pathway 
for age group 0-39 due to limited sample size
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capture the tails of the length of stay distributions. The 
naive estimates of the length of stay are systematically 
shorter than the real-times estimates, particularly evi-
dent in the ward length of stay for 70+ year olds, with 
greater variability in the ward-to-ICU and ICU length 
of stay estimates consistent with the smaller numbers of 
observations. This systematic difference is expected, as 
those with longer lengths of stay are more likely to have 
been excluded from this analysis.

Discussion
The reduced length of stay estimates we have produced 
are consistent with reports of Omicron-dominated epi-
demics in other settings internationally, for example: An 
analysis of a private hospital network in South Africa 
across 2351 Omicron patients and 6,342 Delta patients 
showed a reduction in median total length of stay from 
approximately 7–8 days in the Delta epidemic wave 
to 3 days in the Omicron epidemic [19]; an analysis of 
patients within a Houston healthcare network showed 
a reduction in median total length of stay from 5.4 days 
for Delta patients to 3.0 days for Omicron patients [20], 
and; an analysis of a Portuguese cohort reported a 4 day 
reduction in the mean length of hospital stay between 
Delta and Omicron [21].

We found that, across all of the Delta, mixed Delta-
Omicron and Omicron Hunter New England analyses, 
the length of stay in ward increased with age group, a 

pattern which has been reported elsewhere [17, 22]. 
However, this trend is not observed to the same extent 
for the ICU pathways, with only moderate increases in 
the 40–69 and 70 + age-groups compared to those aged 
0–39. There is no clear mechanistic explanation for this 
difference in trend between ward and ICU, though it may 
be a form of selection bias where those who are admit-
ted to the ICU are triaged conditional on them having 
a greater chance of benefiting (e.g., more likely to sur-
vive, may recover at a greater rate), especially where ICU 
resources are relatively scarce [23]. However, there have 
been substantial differences in the vaccination rollout 
by age group in Australia that may confound this, with a 
general prioritisation of those at most risk of severe dis-
ease for both the first two doses and the third dose.

Although there is now strong evidence that Omicron 
leads to less severe disease at both the individual and 
population level relative to Delta [19–21, 24, 25], other 
factors that influence length of stay must be considered 
when interpreting the results presented here. At the time 
of analysis, ward bed occupancy in New South Wales for 
the mixed-Delta-Omicron epidemic had reached more 
than double the peak occupancy reported during the 
Delta-only epidemic (Fig. 1). While data was not available 
on the number of unoccupied beds at specific hospitals in 
New South Wales, prior research indicates that increased 
pressure on health systems can lead to self-regulation 
where earlier discharges will be more likely [26], which 

Fig. 6  Comparison of mean length of stay (and 95% CI) for key pathways using differing estimation methods and input datasets. Real-time 
estimates are produced using the multi-state survival analysis framework, using data as at 7 February 2022 (as used for the main results). 
Retrospective estimates are produced using basic distribution fitting over fully observed patient progression, with data extracted at a later date 
as at 29 August 2022. Naive estimates use basic distribution fitting over real-time data as at 7 February 2022 and do not account for censoring 
present in the data. Mixed Omicron-Delta estimates are produced over individuals admitted to hospital between 15 December 2021 and 2 February 
2022 (Note that this period differs from main results due to a change in inclusion criteria in the more recent data extract which applied to patients 
admitted after 3 February 2022)
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would be reflected in our results as a shorter length of 
stay.

It has been suggested that vaccination may result in 
a reduced length of stay [27], though evidence in this 
regard is limited. As such, the reduced length of stay 
observed between the two epidemic periods could be—
at least partially—a result of the changes in vaccination 
coverage. At the start of the Delta epidemic period (1 
July 2021), 6.5% of the total New South Wales population 
had received two doses of a COVID-19 vaccine, increas-
ing to 52.4% mid-period (1 October 2021), and reaching 
a coverage of 75.0% by 14 December 2021. The booster/
third dose program commenced around late-November 

2021, with 24.5% of the total population having received 
a third/booster dose by 7 February 2022. Population 
immunity from prior infection at the time of Omicron 
emergence in New South Wales was negligible, with 
the count of cumulative confirmed cases reaching only 
approximately 1% of the population size (with very high 
levels of case ascertainment achieved through intensive 
contact tracing).

Within the epidemic periods where Omicron was 
present, the BA.1 PANGO lineage of SARS-CoV-2 was 
responsible for the majority of case growth. The BA.2 lin-
eage of Omicron was first detected in early January 2022 
[3, 28], reaching substantial prevalence in late February 

Table 1  Number of patients observed (n), modelled mean and 90th percentile length of stay (95% confidence intervals) across the 
ward-to-discharge, ward-to-ICU and ICU-to-post-ICU pathways for all age groups

Delta estimates are produced over individuals admitted to hospital between 1 July 2021 and 14 December 2021, Omicron and mixed-Omicron-Delta estimates are 
produced over individuals admitted to hospital between 15 December 2021 and 7 February 2022. For each of the Delta, Omicron-Delta, and Omicron (HNE) analyses, 
there were (3, 1128, 6) censored individuals in the ward, (0, 4, 114) in the ICU, and (1, 135, 10) in the post-ICU ward, respectively

Pathway Period Age group n Mean 90% Quantile

Ward to discharge

0–39 2521 3.60 (3.48, 3.81) 8.82 (8.47, 9.18)

Delta 40–69 2555 5.78 (5.59, 5.99) 13.76 (13.08, 14.29)

70+ 811 12.31 (11.75, 12.95) 27.08 (25.41, 28.56)

0–39 4208 2.16 (2.12, 2.21) 5.03 (4.83, 5.21)

Omicron-Delta 40–69 3,014 3.93 (3.78, 4.07) 9.59 (9.10, 9.95)

70+ 2701 7.61 (7.31, 8.01) 17.36 (16.43, 18.37)

0–39 293 2.05 (1.80, 2.30) 4.89 (4.48, 5.60)

Omicron (HNE) 40–69 238 2.92 (2.50, 3.67) 7.21 (6.25, 8.54)

70+ 197 6.02 (4.91, 7.01) 13.46 (11.53, 16.61)

Ward to ICU

0–39 282 1.64 (1.41, 1.90) 4.31 (3.62, 5.13)

Delta 40–69 733 2.07 (1.89, 2.24) 5.48 (5.10, 5.94)

70+ 239 2.90 (2.45, 3.23) 7.54 (6.45, 8.76)

0–39 162 0.82 (0.67, 0.97) 2.17 (1.68, 2.55)

Omicron-Delta 40-69 402 1.81 (1.54, 2.08) 4.95 (4.27, 5.56)

70+ 356 2.03 (1.83, 2.42) 5.51 (4.60, 6.30)

0–39 12 – –

Omicron (HNE) 40–69 25 0.98 (0.47, 1.46) 2.66 (1.50, 5.27)

70+ 32 1.27 (0.82, 1.97) 3.32 (1.79, 6.00)

ICU to post-ICU

0–39 234 7.50 (6.99, 8.33) 18.07 (16.80, 19.64)

Delta 40–69 581 9.44 (8.81, 10.07) 21.50 (20.49, 23.07)

70+ 143 8.94 (7.80, 9.91) 20.62 (18.67, 22.64)

0–39 120 4.65 (4.11, 5.45) 10.37 (9.29, 11.46)

Omicron-Delta 40–69 271 5.67 (5.15, 6.10) 12.04 (11.23, 13.21)

70+ 221 5.63 (5.25, 6.15) 11.97 (11.07, 13.25)

0–39 9 3.93 (2.58, 5.68) 7.92 (5.46, 10.57)

Omicron (HNE) 40–69 19 4.30 (3.29, 5.72) 8.50 (6.90, 11.04)

70+ 22 4.36 (3.40, 5.57) 8.58 (6.81, 10.44)
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(making up 23% of sequenced cases across Australia 
across the period 14 February through to 28 February 
2022 [7]). It is therefore possible that the length of stay 
estimates for the mixed Omicron-Delta and Omicron 
Hunter New England epidemic periods are influenced by 
the inclusion of a small number of BA.2 lineage cases.

Across the study period (1 July 2021–7 February 
2022), the Australian Government approved a num-
ber of new treatments for COVID-19, including 3 
monoclonal antibody treatments, 2 antivirals and 1 
immunosuppressive [29]. The treatment casirivimab-
imdevimab (Ronapreve, approved 15 Oct 2021) has 
been associated with a lower length of stay in hospital 
(though not in ICU) [30] and tocilizumab (Actemra, 
approved 1 Dec 2021) has been associated with both 
shorter hospital and ICU stay [31]. However, casiriv-
imab-imdevimab has been noted to have substantially 
lower efficacy against the Omicron variant [32], and 
the use of tocilizumab was likely limited at the time 
due to supply constraints [33]. We were unable to 
incorporate the potential effects of treatment in our 
estimates of length of stay as no data was available in 
this regard. If data on treatments at the individual-
level were available, this could be included as an addi-
tional stratification alongside age-group and epidemic 
period, allowing for the effect of treatments at the 
population-level to be monitored in real-time. Fur-
thermore, when coupled with information on future 
availability of treatments, such outputs would poten-
tially allow for forecasts to be produced to assist in 
policy decision-making regarding the optimal alloca-
tion of treatments in reducing the healthcare burden 
of hospitalised cases.

Our retrospective and naive analyses (Fig.   6) high-
light the benefits of applying robust statistical meth-
ods that allow inclusion of all available data, as is 
particularly important during developing infectious 
disease outbreaks. Real-time estimation of length of 
stay is challenging and the uncertainty resulting from 
the censoring of outcomes means that any real-time 
estimates will be imperfect. The retrospective analysis 
shown in Figure  6 demonstrates that the multi-state 
model provides substantially more robust inference 
in real-time than the naive approach, and generates 
estimates that largely overcome the challenges posed 
by real-time estimation. The length of stay means we 
modelled in real-time were at most 5–10% different 
from those finally observed, similar to that reported 
in a previous study of COVID-19 hospital length of 
stay, which also used a multi-state survival model [11]. 
The hospital length of stay is key to characterising the 
healthcare burden (i.e., how many beds required per 
day) during an epidemic. In the context of providing 

evidence for decision makers, systematic underesti-
mates of the length of stay such as those produced by 
the naive analysis will lead to underestimation of the 
necessary resources required to manage the healthcare 
burden.

Conclusions
The results presented from hospitalised COVID-19 
patients in New South Wales, Australia, indicate a 
reduced mean length of stay of the Omicron variant 
of SARS-CoV-2 compared to the Delta variant. The 
observed survival curves and 90% quantile estimates of 
length of stays are similarly reduced, showing that the 
overall distributions of length of stay are reduced, and 
not just the central tendencies. Our analysis accounted 
for the censoring of patient progression that is inherent 
to real-time data through utilisation of a competing-
risk survival analysis framework. Estimates produced 
retrospectively using complete data aligned closely with 
those produced from censored data, demonstrating 
that this framework is a robust approach to estimating 
hospital length of stay in real-time.

Our use of real-time data allowed for up-to-date esti-
mates of hospital length of stay to be rapidly reported 
for planning and modelling purposes. This method was 
utilised to provide estimates of length of stay to public 
health authorities throughout the Omicron epidemic in 
Australia, informing early response planning during a 
time of substantial uncertainty.
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2021 and 7 February 2022. Estimates for the ICU-to-post-ICU pathway 
could not be produced from the Hunter New England Omicron epidemic 
in the ICU and post-ICU pathways due to limited sample counts in the 
data. Figure S4: Sensitivity analysis across differing degrees of filtering 
during construction of the clinical datasets. Estimated length of stay 
means and 95% confidence intervals shown. For the ‘No filtering’ and ‘Fil-
tering out symptom onset after admission’ scenarios, individuals with epi-
sodes greater than 5 days apart were still removed. Data as of 2022-01-25.
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