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Abstract

Background Monitoring the number of COVID-19 patients in hospital beds was a critical
component of Australia’s real-time surveillance strategy for the disease. From2021 to 2023,
we produced short-term forecasts of bed occupancy to support public health decision-
making.
Methods We present a model for forecasting the number of ward and intensive care unit
(ICU)bedsoccupiedbyCOVID-19cases. Themodel simulates the stochastic progressionof
COVID-19 patients through the hospital system and is fit to reported occupancy counts
using an approximate Bayesian method. We do not directly model infection dynamics—
instead, taking independently produced forecasts of case incidence as an input—enabling
the independent development of our model from that of the underlying case forecast(s).
ResultsHere, we evaluate the performance of 21-day forecasts ofward and ICUoccupancy
across Australia’s eight states and territories produced across the period March and
September 2022. We find forecasts are on average biased downwards immediately prior to
epidemic peaks and biased upwards post-peak. Forecast performance is best in
jurisdictions with the largest population sizes.
Conclusions Our forecasts of COVID-19 hospital burden were reported weekly to national
decision-making committees to support Australia’s public health response. Our modular
approach for forecasting clinical burden is found to enable both the independent
development of our model from that of the underlying case forecast(s) and the performance
benefits of an ensemble case forecast to be leveraged by our occupancy forecasts.

Throughout 2020–2022, SARS-CoV-2 induced large epidemic waves of
infection internationally, with a considerable proportion of these infec-
tions requiring medical care. During peak epidemic periods, the demand
for hospital beds overwhelmed the capacity of healthcare systems in
many settings1–3. The number of beds occupied by COVID-19 cases
depends upon the number of new patients admitted and the length of stay
of these patients—with both quantities being products of the severity of
disease and of clinical practice4–7. Forecasts of hospital occupancy can
provide public health decision makers with intelligence to support
decision-making.

Australia’s early COVID-19 experience differed from most other
countries, with only a small proportion of the population having been
infected prior to the widespread uptake of vaccination; by December 2021,
over 80% of adults had been vaccinated, and less than 2%of adults had been
recorded as infected amidst intensive public health measures8,9. The Omi-
cronvariant of SARS-CoV-2emerged inNovember2021,with theOmicron
BA.1 lineage inducing major waves of infection across Australia and
resulting in at least 17% of the population having been infected by March
202210. We limit our study to the period between March and September
2022, whichwas defined by twomajorwaves of infection: awave inducedby
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Plain language summary

During the COVID-19 pandemic, predicting
the potential future impact of the disease on
hospitals was crucial. In this study, we aimed
to predict how many hospital ward and
intensive care unit (ICU) beds would be nee-
ded for COVID-19 patients in Australia with
the aim of supporting public health decision-
makers. Our approach used forecasts of new
COVID-19cases as input and factored in real-
time information such as how likely cases
were to be hospitalised or require
ICU care.We found that, while generally
accurate, our forecasts tended to under-
predict just before a wave of infections
peaked, and overpredict after the peak had
passed. Our flexible modelling method could
be adapted to predict hospital needs for other
infectious diseases in the future, helping to
prepare for epidemics of illnesses like influ-
enza or RSV.
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theOmicronBA.2 lineage,whichpeaked inMarch–April 202211; andawave
induced by the Omicron BA.4 and BA.5 lineages, which peaked in late July
202212.

In this work, we describe a model for producing short-term (21-day)
forecasts of hospital occupancy.We chose daily bed occupancy as a forecast
target—rather than daily admissions—as occupancymore closely relates to
the overall capacity of the hospital system. Furthermore, such bed occu-
pancy counts had been collected and publicly reported for each state and
territory ofAustralia on a daily basis since the early stages of the pandemic13.
Our forecastingmodel takes as input an independently produced forecast of
daily case incidence (specifically, an ensemble forecast consisting of four
component models, each produced by a different researcher(s)14), with this
incidence then transformed intoward and ICUoccupancy counts through a
stochastic compartmental model, with the probabilities of hospitalisation
and of ICU admission informed by near-real-time data. The duration of
time spent in each compartment is informed by censoring-adjusted esti-
mates of patient length of stay15. Simulation outputs are then fit to reported
occupancy counts using an Approximate Bayesian Computation
approach16.

Under the specifications of the Australian National Disease Surveil-
lance Plan for COVID-1917, we reported forecasts from our model to key
national decision-making committees on aweekly basis as part of a national
COVID-19 situational assessment programme14. We examine the perfor-
mance of the forecasts throughout the study period (March–September
2022), both qualitatively—using visual cheques—and quantitatively—with
the use of formal statistical metrics18–21.We discuss how the performance of
our occupancy forecasts changes with the epidemiological context and how
it depends upon the performance of the input case forecasts.

Methods
Summary
We produced forecasts of the number of COVID-19 cases in hospital ward
and ICU beds (i.e. the ward and ICUoccupancies) on aweekly basis using a
bespoke clinical forecasting pipeline (Fig. 1a). We simulated the pathways
taken by COVID-19 cases through a hospital as flow through a compart-
mental model (Fig. 2a). Our clinical forecasting pipeline takes in three
primary inputs: an ensemble case forecast, time-varying estimates of key
epidemiological parameters (the age distribution of cases, the probability of
hospital admission, and the probability of ICU admission), and estimates of
patient length of stay. The model outputs are fit to reported occupancy
counts across a seven-day window prior to the forecast start date using
Approximate Bayesian Computation (ABC)16. We reported the resultant

21-day forecasted counts of ward and ICU occupancy to public health
committees on a weekly basis.

Compartmental pathways model
Our compartmental model simulates the progression of severe COVID-19
disease and corresponding pathways taken through a hospital (Fig. 2a). The
design of this model was informed by COVID-19 clinical progression
models previously developed for the Australian health system context22–24.
In our model, new COVID-19 cases start in the Case compartment
according to their date of symptom onset (inferred where not recorded).
From this compartment, some fraction of cases are admitted to hospital,
according to a (time-varying) probability of case hospitalisation. Hospita-
lisations start in the Ward compartment, from which a patient can then
develop further severe disease and be admitted to ICU, according to a (time-
varying) probability of ICU admission. Patients in the ICU compartment
can thenmove to the Post-ICUward compartment. In addition, across each
of theWard, ICU, and Post-ICU ward compartments, we assume patients
have some probability of dying or being discharged. We count the number
of occupied ward beds as the number of patients in theWard and Post-ICU
ward compartments, and the number of occupied ICU beds as the number
of patients in the ICU compartment.

Length of stay estimates
To simulate theflowof patients through the compartmentalmodel, weneed
to specify distributional estimates of the duration of time they will spend
within a compartment before a transition occurs (i.e. their length of stay),
and the probabilities of each particular transition occurring (i.e. transition
probabilities). We produced estimates of length of stay and transition
probabilities using a multi-state survival analysis approach15. This survival
analysis framework allowed us to produce estimates across our compart-
mental model in near-real-time while accounting for right-censoring, such
that we could rapidly incorporate any changes in length of stay or transition
probabilitieswhennecessary.Changes in these quantitiesmayhave arisen as
a consequence of factors such as a new variant exhibiting different clinical
severity, changes in clinical practice, or vaccination. Although we did not
include these factors as covariates in the survival model, their net effect on
length of stay statistics during the study period was captured by producing
our length of stay estimates over only recently admitted patients. We esti-
mated lengthof stay and transitionprobabilitiesusinghospital data fromthe
state of New South Wales (see ref. 15, Supplementary Methods). We were
not able to produce similar estimates for the other states and territories of
Australia as the requisite line-listed hospital stay data were not accessible to
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hospital progression
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Computation (ABC)

inference

Age-specific probability of
case hospitalisation

Age and variant-specific estimates
of patient length of stay
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case incidence
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Case age
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Fig. 1 | Overview of the clinical forecasting pipeline. a The forecasting pipeline from inputs (left) through to output forecasts (right).
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us or did not exist. The delay distribution forCase toWardwas informedby
estimates (not described here) from the FluCAN sentinel hospital surveil-
lance network study25, as appropriate datawere not available to estimate this
delay in the New South Wales dataset (Supplementary Methods), noting
that this delay only affects the relative timing of the occupancy time series.
The transition probabilities from the multi-state survival model were used
across all transitions in the compartmental model except for the Case to
Ward and theWard to ICU transitions. The transitionprobabilities for these
two transitions were estimated as time-varying (described later), given their
substantial impact upon the net occupancy counts. The length of stay and
transition probability estimates were provided to the simulation model as
bootstrapped samples of gamma distribution shape and scale parameters
and multinomial probabilities of transition.

Case incidence
In our compartmentalmodel (Fig. 2a), cases ofCOVID-19begin in theCase
compartment. As such, wemust inform themodel with the number of new
cases entering this compartment each day: we achieve this through use of a
time series of historically reported case incidence concatenated with a tra-
jectory of forecasted case incidence.

We received time series of historical case incidence indexed by date of
symptom onset from an external model26. This external model performs
imputation of symptom onset dates where they have not been recorded in
thedata,with thefinal time series being the count of caseswith a (reportedor
imputed) onset date on each givendate. Because this externalmodel did not
performmultiple imputation of the symptom onset date, we added noise to
capture uncertainty in the case counts via sampling from a negative bino-
mial distributionwith ameanof the historical case count and a dispersion of
k=25.This uncertaintywas expected to assist the subsequent inference stage
by increasing the prior predictive uncertainty. A dispersion value of 25 was
selected through visual inspection such that the expected variability in
incidence by symptom onset date was captured (noting that the subsequent
inference stage was able to further refine this uncertainty where necessary,
e.g. rejecting samples where the uncertainty in case incidence was too great
or too small).

Ourmethod is agnostic to the case forecasting approach used as input,
thus allowing us to couple it with any independently produced forecast of
case incidence. Here we used outputs from an ensemble forecast of case
incidence, which varied in model composition during the study period
(methodologies and summaryoutputs for the ensemble forecast are publicly
available14). A total of four different models were used at various stages: two
mechanistic compartmental models, one mechanistic branching process
model, and a non-mechanistic time series model (see in refs. 14,27,28 for
details). Models within the ensemble received ongoing development across
the study period in response to changes in our understanding of the epi-
demiology and biology of the virus14.

Estimation of time-varying parameters
We specified three parameters in the compartmental model of clinical
progression as time-varying. For each forecast, we produced estimates
stratified by age group a and varying with time t of: the probability of a case
being within a certain age group, page(a, t); the probability of a case being
hospitalised, phosp(a, t); and the probability of a hospitalised case being
admitted to ICU, pICU(a, t). These parameters were chosen to capture
phenomena such as changes in case age distribution, changes in case
ascertainment, differences in variant virulence and outbreaks of the disease
within populations subgroups. We defined age groups as 10-year groups
from age 0 to 80, followed by a final age group comprising individuals of age
80 and above (i.e. 0–9, 10–19, ..., 80+).

The time-varying parameters were estimated using case data from the
National Notifiable Disease Surveillance System (NNDSS), which collates
information on COVID-19 cases across the eight state and territories of
Australia. For each case in this dataset, we extracted the date of case noti-
fication, the recorded symptom onset date, the age of the case, and whether
ornot the case hadbeen admitted tohospital or ICU.Where symptomonset
date was not available, we assumed it to be one day prior to the date of
notification (where this was the median delay observed in the data).

For each of the three time-varying parameters, we constructed esti-
mates using a one-week moving-window average, with estimates for time t
including all caseswith a symptomonset datewithin the period (t− 7, t]. To
capture uncertainty in these time-varying parameters, estimates were pro-
ducedusing bootstrapping (samplingwith replacement) from the line-listed
data. A total of 50 bootstrapped samples were produced, with each sample
consisting of three parameter time series (each stratified by nine age groups
for a total of 27 time series). At the simulation and inference stage, each
simulation received a single such sample as input, such that correlation
between the 27 time series was preserved.We calculated the first parameter
page(a, t), which defines themultinomial age distribution of cases over time,
as the proportion of cases within each age group for an estimation window:

pageða; tÞ ¼
Pt

τ¼t�6 naðtÞPt
τ¼t�6

P
iniðτÞ

; ð1Þ

where na(τ) is the number of cases in age group a with symptom onset at
time τ. To calculate the probability of a case being hospitalised and the
probability of a hospitalised case being admitted to ICU, we produced
estimates with adjustment for right-truncation. Here, right-truncation was
present as we used near-real-time epidemiological data and indexed our
estimates by date of symptom onset. The most recent symptom onset dates
in our estimates thus included cases that would eventually be (but had not
yet been) hospitalised (and similarly for cases admitted to hospital, but not
yet admitted to ICU). Had we not accounted for this right-truncation, we
would have consistently underestimated the probabilities of hospitalisation

Case Ward
Post-ICU

ward

Died

Time-varying
probability of case

hospitalisation

Ensemble forecasts of
case incidence

Time-varying
probability of ICU

admission
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Discharged
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Fig. 2 | The compartmental model of COVID-19 clinical progression used to
simulate the flowof COVID-19 patients through a hospital. aThe compartmental
model. The probability of transition betweenCase andWard and betweenWard and
ICUwas informed by time-varying age-specific estimates, all other probabilities were

specified according to age-specific estimates from the multi-state length of stay
analysis. The number of occupied ward beds reported by the model is the sum of the
individuals in the Ward and Post-ICU ward compartments, and the number of
occupied ICU beds is the number of individuals in the ICU compartment.
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and ICU admission for the most recent dates. We describe the maximum-
likelihood estimation of the hospitalisation and ICU admission parameters
in the Supplementary Methods.

If in a given reporting week we identified a jurisdiction as having
unreliable data on hospitalised cases (most often, missing data on cases
admitted to hospital or ICU due to data entry delays), we replaced the local
estimates with estimates produced from pooled data across all other (reli-
able) jurisdictions. Changesmade in this regard during the study period are
listed in the Supplementary Methods.

Simulation and inference
To simulate a single trajectory of ward and ICU occupancy, we sampled: a
trajectory of case incidence from the ensemble; a sample of the bootstrapped
time-varying parameters (each comprising three time series across nine age
groups); and a sample from the bootstrapped length of stay and transition
probability estimates.Using these inputs,weperformedsimulationsacross the
compartmentalmodel (Fig. 2a) independently across eachagegroupand then
summed across all age groups to produce total ward and ICU counts for each
day. The compartmental model simulates the pathways of patients through
the hospital at the population scalewith an efficient agent-based approach;we
provide details on this algorithm in the Supplementary Methods.

To ensure that trajectories simulated from the clinical pathwaysmodel
aligned with reported occupancy counts, we introduce a simple rejection-
sampling approximate Bayesian method, rejecting trajectories that did not
match the true reported occupancy counts within a relative tolerance ϵ
across a one-weekcalibrationwindow. For each simulationwith a simulated
ward occupancy count ŴðtÞ and simulated ICU occupancy count ÎðtÞ,
simulations were rejected where either:

∣WðtÞ � ŴðtÞ∣ > maxðϵWðtÞ; 10Þ or ∣IðtÞ � ÎðtÞ∣ > maxð2ϵIðtÞ; 10Þ;
ð2Þ

whereW(t) and I(t) were the true reported occupancy counts for each date t
in the fitting window, with these counts retrieved from the covid19data.-
com.au project13.We selected ϵ using a simple stepped threshold algorithm,
initialisingϵ at a small value, and continued tosample simulationsuntil 1000
trajectories had been accepted by the model. If 1000 trajectories were not
accepted by the time that 100, 000 simulations had been performed (i.e. 100
rejections per target number of output trajectories), we increased ϵ in
sequence from[0.1, 0.2, 0.3, 0.5, 1, 10] and restarted the samplingprocedure.
This behaviour was chosen to achieve a good degree of predictive perfor-
mance while ensuring that reporting deadlines weremet (typically less than
24 h from receipt of ensemble forecasts and relevant hospital data), even
where the model was otherwise unlikely to capture hospital occupancy at
tighter degrees of tolerance.

We fit simulation outputs over a calibration window defined as the
seven days following the start of the 28-day case forecast. This was chosen
such that the most up-to-date occupancy data could be used in fitting
(typically data as of, or a day prior to, the date clinical forecasts were pro-
duced). We could fit the clinical forecast over occupancy data points which
were seven days in the future relative to the start of the case forecast for two
reasons: the case forecasts were indexed by date of symptom onset and
began at the date where a majority (>90%) of cases had experienced
symptom onset, adding a delay of 2–3 days; and case forecasts were affected
by reporting delays of 3–4 days (whereas occupancy data was not lagged).
We did not fit over a larger window as the seven-day window was expected
to be sufficient for our purposes, and the computational requirements of
model fitting would increase exponentially with a larger window. The
forecasts we reported on a weekly basis and examine here are the model
outputs across the 21 days following this seven-day fitting window.

We introduced two additional parameters to improve the ability of the
model to fit to the reported occupancy counts. These parameters increased
variance in the magnitude of the output ward and ICU occupancy count
trajectories, reducing the probability of a substantial mismatch between
these trajectories and the reported occupancy counts. The first parameter

added wasH, a modifier on the probability of hospitalisation acting linearly
across logit-transformed values:

p�h ¼ logit�1ðlogitðphÞ þ HÞ;H � Nð0; σ2hosp Þ: ð3Þ

The second parameter added was L, which modified the shape of the
length of stay distributions across the transitions out of Case, Ward, and
Post-ICU Ward, acting linearly across log-transformed values:

shape�i ¼ expðlogðshapeiÞ þ LÞ; L � Nð0; σ2losÞ: ð4Þ

The values of H and L were sampled from normal distribution priors
with means of zero and standard deviations of σ2hosp ¼ 0:8 and σ2los ¼
0:5 respectively.We specified these values to reduce the computational time
required while ensuring the output model trajectories had good coverage
over the reported occupancy counts. These parameters were changed for
some jurisdictions during the study period; see the SupplementaryMethods
for details.

To illustrate the effect of theH and L parameters, we simulated model
outputs for an example forecast with and without these parameters set to
zero (Supplementary Methods). This demonstrates that output trajectories
without the effect ofH andLmay already alignwith the reported occupancy
counts, but where this does not occur, they enable the recent reported
occupancy counts to be well captured by the fitted model outputs (Sup-
plementary Methods).

Performance evaluation
Weconsider theperformanceof our forecasts producedbetweenMarch and
September 2022. We produced plots for the visual assessment of forecast
performance (Fig. 3a, b and Supplementary Figs. 9–24) which depict all
forecasts across the study period with the same presentation of uncertainty
as was used in official reporting of the forecasts (with pointwise credible
intervals ranging from 20% through to 90% by steps of 10%, and reported
occupancy counts overlaid).

To evaluate the overall performance of our forecasts, we calculated
continuous ranked probability scores (CRPS) across log-transformed
counts of occupancy. The CRPS measures the distributional accuracy of a
set of forecasts against the eventual observations18. The CRPS is a proper
scoring rule: in the limit, where a forecast reports the true probabilities of the
underlying process, it will receive the greatest score. We calculated CRPS
over log-transformed counts (specifically, x� ¼ logeðx þ 1Þ) rather than
over raw counts, as this has been argued to be more meaningful given the
exponential nature of epidemic growth19. This transformation also allows us
to interpret the resultant CRPS values as a relative error19, enabling com-
parison of the forecast performance between different settings. We also
calculated skill scores of our forecasting model in comparison to a naive
random walk model (Supplementary Methods), with results presented in
Supplementary Figs. 7 and 8.

We calculated forecast bias to examine where the overall performance
of our forecast was reduced due to consistent overprediction or
underprediction20 (Fig. 5a–h). Forecast bias (as opposed to, for example,
estimator bias29) ranges between −1 and 1, with a bias greater than zero
indicating overprediction and less than zero indicating underprediction.
Bias values of approximately zero are ideal, indicating a forecast that
overpredicts as often as it underpredicts (or vice versa).

We produced plots demonstrating the association between the per-
formance of ourward and ICUoccupancy forecasts and the underlying case
forecasts used as input. Specifically, we compared the case forecast perfor-
mance calculated using CRPS to the bias of the ward occupancy forecasts
(Fig. 6a–h) and ICU occupancy forecasts (Supplementary Fig. 5), and the
bias of the case forecasts to that of the ward occupancy forecasts (Supple-
mentary Fig. 6).These valueswere calculated across thewholehorizonof the
respective forecasts; it should be noted that such comparisons are inherently
limiteddue to the lag betweenonset of symptoms and admission tohospital,
i.e. the performance of the case forecast at the 28 day horizon would be
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expected to be of lesser influence given these cases are less likely to be
hospitalised within the time-frame of our simulation.

We produced probability integral transform (PIT) plots to evaluate the
calibration of the forecast (Supplementary Fig. 3). Calibration refers to the
concordance between the distribution of our forecasts and the eventual
distribution of observations21; for example, in awell calibrated forecast, each
decile across the distribution of all forecast predictions should contain~10%
of the eventual observations. Where overlapping intervals contained the
eventual observation (typically due to small integer counts, e.g. in smaller
population size jurisdictions), we have counted each overlapping interval as
containing the observation, with these down-weighted such that any given
observation only contributed a total count of one.

Version control repositories are available on GitHub for the simu-
lation and inference steps (http://github.com/ruarai/curvemush), the

forecasting pipeline (http://github.com/ruarai/clinical_forecasts), and
performance evaluation and manuscript figure plotting code (http://
github.com/ruarai/clinical_forecasting_paper). Analysis was performed
in the R statistical computing environment (version 4.3.2)30. The fore-
casting pipeline was implemented using the targets package31, with
tidyverse packages used for data manipulation32, pracma for
numerical solutions of the maximum-likelihood estimates33, and Rcpp
for interfacing with the stochastic simulation C++ code. Forecasting
performance was evaluated using the fabletools, tsibble, and
distributional packages34–36.

Ethics
The study was undertaken as urgent public health action to support Aus-
tralia’s COVID-19 pandemic response. The study used data from the

Fig. 3 | Forecasts of ward and ICU occupancy for the state of New South Wales
produced between March and September 2022. a Forecasts of ward occupancy.
b Forecasts of ICU occupancy. Credible intervals from 20% through to 90% in 10%
increments are displayed in progressively lighter shading. Reported occupancy
counts are overlaid. Aswe produced our forecasts on aweekly basis and each forecast
spans three weeks, forecasts are plotted interleaved across three rows; reported
occupancy counts are repeated across each row. Forecast start dates are displayed as

vertical dashed lines. Note that forecast start date was dependent upon that of the
case forecast, and this varied slightly over time (see forecasts 5, 9, 12, and 19). The
second week for each forecast (days 8–14) has background shaded in light blue. An
identifier for each forecast, 1 through 21, is displayed above each forecast start, and a
^ is displayed where the upper credible intervals of a forecast exceed the y-axis limits.
Forecasts for other states and territories are provided in the Supplementary
Materials.
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Australian National Notifiable Disease Surveillance System (NNDSS) pro-
vided to the Australian Government Department of Health and Aged Care
under the National Health Security Agreement for the purposes of national
communicable disease surveillance. Non-identifiable data from theNNDSS
were supplied to the investigator team for the purposes of provision of
epidemiological advice to government; data were securely managed to
ensure patient privacy and to ensure the study’s compliance with the
National Health andMedical Research Council’s Ethical Considerations in
Quality Assurance and Evaluation Activities. Contractual obligations
established strict data protection protocols agreed between theUniversity of
Melbourne and sub-contractors and the Australian Government Depart-
ment of Health and Aged Care, with oversight and approval for use in
supporting Australia’s pandemic response and for publication provided by
the data custodians represented by the Communicable DiseasesNetwork of
Australia. The use of these data for these purposes, including publication,
was agreed by the Department of Health with the Communicable Diseases
Network of Australia. Ethical approval for this study was also provided by
The University of Melbourne’s Human Research Ethics Committee (2024-
26949-50575-3). Further, as part of this ethics approval, the University of
Melbourne’s Human Research Ethics Committee provided waiver of con-
sent for the use of the case data, as it was believed to be impracticable to
contact each individual included in this routinely collected surveillance data
and that there was no likely reason that individuals would not consent
if asked.

The study used routinely collected patient administration data from
the New SouthWales (NSW) Patient Flow Portal (PFP). De-identified PFP
data were securely managed to ensure patient privacy and to ensure the
study’s compliance with the National Health and Medical Research
Council’s Ethical Considerations in Quality Assurance and Evaluation
Activities. These data were provided for use in this study to support public
health responseunder the governanceofHealthProtectionNSW.TheNSW
Public Health Act (2010) allows for such release of data to identify and
monitor risk factors for diseases and conditions that have a substantial
adverse impact on thepopulationand to improve servicedelivery. Following
review, the NSW Ministry of Health determined that this study met that
threshold and therefore provided approval for the study to proceed.
Approval for publication was provided by the NSWMinistry of Health.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Visual performance assessments
We examined the qualitative performance of our ward and ICU forecasts
throughvisual assessment using the state ofNewSouthWales as a case study
(Fig. 3a, b, respectively). Forecasts 1–3 captured both ward and ICU counts
(with observed data falling within the 60% intervals across the 15–21 day
horizon) during the early growth phase of Omicron BA.2 in lateMarch and
early April 2022. The peak in ward occupancy induced byOmicron BA.2 in
late April fell within the central density (50% interval) across the 15–21 day
horizons of forecasts produced 2–3 weeks prior to the peak (forecasts 4, 5).
Forecasts of the declining phase of the BA.2 epidemic exhibited varied
performance. The first forecast in mid-April (forecast 6) underpredicted
ward occupancy, though not ICU occupancy. This was followed by two
forecasts (forecasts 7, 8) which captured ward occupancy better than fore-
cast 6, although forecast 8 predicted ICU occupancy with insufficient
uncertainty (i.e. overconfidence), with observations falling outside of the
80% interval for themajority of time points across the forecast horizon. The
subsequent forecast produced in earlyMay (forecast 9) incorrectly predicted
thatward and ICUoccupancy countswould resurge rather than continue to
very slowly decline.

NewSouthWales forecasts produced during the inter-epidemic period
between the BA.2 and BA.4/5 waves in lateMay and early June consistently
underpredicted ward occupancy and marginally underpredicted ICU

occupancy (forecasts 11–14). We continued to predict declines in occu-
pancy, with the early growth phase of the BA.4/5 wave not captured in our
predictions until late June (forecast 15), almost amonth afteroccupancyhad
begun to stabilise and then slowly increase. Similar to the BA.2 peak, early
forecasts captured the magnitude of the BA.4/5 peak in ward occupancy in
mid-July, with observations across days 15–21 of the forecast horizon lying
within the 40% interval and the 80% interval for forecast 17 and 18,
respectively.However, these forecasts failed topredict the timingof thepeak,
instead predicting that ward occupancy would continue to increase into
August. Our forecasts only correctly predicted reductions in the occupancy
counts once counts had already begun to stabilise in late July (forecasts
19–21), though these stillmarginally overpredictedward occupancy counts.

Further plots for the visual assessment of forecast performance for all
other jurisdictions are available in the supplementary materials (Supple-
mentary Figs. 9–24).

Quantitative performance
Measured forecast performance varied over the duration of the study period
and across Australia’s eight states and territories (Fig. 4a–d). Measuring
performance aggregated by forecast horizon (Fig. 4a) shows that the per-
formance of the ward occupancy forecasts generally degraded the further
into the future predictions were made (such a reduction in forecasting
performance as the time horizon increases is common tomany domains18).
Ward occupancy performance for the Northern Territory was particularly
unstable across all days of the horizon (Fig. 4a). The drop in forecast per-
formance as forecast horizon increased was less visible for the ICU forecasts
(Fig. 4c), likely reflecting the reduced scale of variation in the ICU time
series, where the effect of changes in epidemic activity were less visible.

Median ward occupancy forecast performance averaged across all
horizons was best in New SouthWales (Fig. 4b), possibly reflecting our use
of hospital length of stay estimates derived from New South Wales data
rather than local estimates (as the requisite data for other states and terri-
tories were not accessible or did not exist). ICU occupancy forecast per-
formancewas best inVictoria, followedbyNewSouthWales. The states and
territories with smaller populations (Tasmania, the Australian Capital
Territory and the Northern Territory) tended to have worse performance
for bothward and ICUoccupancy forecasts, possibly due to a greater impact
of individual-level variation in length of stay where admission counts were
low (Supplementary Figs. 9, 10, 13, 14, 19, 20). Although South Australia
had a (marginally) worse median ward occupancy forecast CRPS thanNew
South Wales (Fig. 4b), examining performance across the 15–21 day hor-
izon (Fig. 4a), the CRPS for South Australia exhibited a greater consistency
in performance.

Examining changes in performance of the ward occupancy forecast
over the duration of the study period (Fig. 5a–h), we note associations
between forecast performance and the epidemiological context, with ward
occupancy forecasts often biased downwards during pre-epidemic peak
phases, and biased upwards during the post-epidemic peak phases. Results
for ICU occupancy forecast performance over time (Supplementary Fig. 4)
showsimilar trends, thoughhere variation in lengthof stay at the individual-
scale likely has a greater influence on performance, given the low (<50)
counts for occupancy across most jurisdictions over the study period.

We examined how the performance of the ensemble case forecast used
as input to our model affected the performance of our ward and ICU
forecasts. Averaged across the horizon of each of the forecasts, the mean
ward forecast CRPS tended to be lower than that of the corresponding case
forecast (Fig. 6a–h). This is expected given that the case forecast is a forecast
of incidence, whereas our forecasts are of occupancy (i.e. prevalence), and as
such exhibit greater autocorrelation and hence predictability. Comparing
the ICU forecast performance to that of the case forecast (Supplementary
Fig. 5) yields broadly similar results, although ICU performance in the
Australian Capital Territory notably underperforms in comparison to the
case forecasts. Bias in the case forecasts tended to be reflected in the ward
occupancy forecasts (Supplementary Fig. 6), although this effect is less clear
in jurisdictions with smaller populations, such as the Northern Territory
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(which has a population of approximately 250,000, compared to 8.1million
for New South Wales or 6.5 million for Victoria).

In our probability integral transform plots (Supplementary Fig. 3), we
observe that forecast calibration varies from good (with the transformed
distribution approximately uniform) to poor (with the transformed dis-
tribution far from uniform) between states and across the ward and ICU
forecasts. Calibration was best for the ward forecasts in South Australia and
best for the ICU forecasts in New South Wales. A few forecasts were
overconfident, with Northern Territory, Queensland, and Tasmanian ward
forecasts and Queensland ICU forecasts having a substantial proportion of
observations occurring in the bottom- or top-most intervals. A similar
pattern canbe observed for theNewSouthWalesward occupancy forecasts,
with a large proportion of observations falling in the top-most interval; this
was likely a consequence of a string of underpredicting forecasts from late
May through to early July (Fig. 3a, b, forecasts 11–14). The ICU forecasts for
South Australia and Victoria had excessive levels of uncertainty, with few
observations falling in the outer intervals.

We inspected the relative performance of our model compared to a
naive randomwalk forecastingmodel (Supplementary Fig. 7). We find that
we outperformed the naive model for most states and territories for both
ward and ICU occupancy across the forecasting horizon. However, across

the 2–3 week horizon, the naive model outperforms our forecasts for ward
occupancy in New South Wales, the Australian Capital Territory, and
Western Australia, and for ICU occupancy in Western Australia. These
results suggest that there may be differences in the inherent difficulty of
forecasting occupancy between the different states and territories. For
predictions at a very short time horizon (less than 3 days ahead), ourmodel
was consistently worse on average than the naive model, likely reflective of
our fitting procedure, where we allowed for trajectories to have some degree
of error around the recent observed counts. We observe substantial het-
erogeneity in skill scores between forecasts across the study period (Sup-
plementary Fig. 8). InNewSouthWales, two forecasts had skill scores of less
thannegative three, and inWesternAustralia, three forecasts had skill scores
of less than negative three. These poorly performing forecasts likely had a
substantial influence on our overall ward forecasting skill scores for these
states. Notably, forecasts for ICU occupancy in Victoria outperformed the
naive forecasting model across all forecasts produced.

Discussion
We have presented a clinical forecasting model for forecasting the number
of patients with COVID-19 inward and ICUbeds. Themodel simulates the
progression of patients through a compartmental model of hospital

Fig. 4 | Summary performance of the ward and ICU forecasts across the study
period (March to September 2022)measured usingCRPS across log-transformed
counts.ACT is theAustralianCapital Territory, NSW isNew SouthWales, NT is the
Northern Territory, QLD is Queensland, SA is South Australia, TAS is Tasmania,
VIC is Victoria, and WA is Western Australia. a, c Forecast performance for ward
(top) and ICU (bottom) by forecast horizon. Median performance (in white) and
intervals for 50%, 75%, 90%, and 95% density (in purple or green) are displayed.
Note the differing x-axis scale across the ward and ICU forecast plots. b, d Summary

forecast performance for ward (top) and ICU (bottom) across all forecasting dates.
Frequency for each state is displayed as a histogram (in black), and density under-
neath (in purple or green), with median overlaid (white and black points). States
have been ordered according to median forecast performance. Note the differing x-
axis scale across the ward and ICU forecast plots. Due to the limited x-axis scales, 14
points are omitted from the histogram for ward for the Northern Territory and 1
point for ICU for Tasmania.

https://doi.org/10.1038/s43856-025-01086-0 Article

Communications Medicine |           (2025) 5:349 7

www.nature.com/commsmed


pathways, with simulations informed by near-real-time epidemiological
data and fit to reported bed occupancy counts using Approximate Bayesian
Computation. We have evaluated the performance of our forecasting
methodology as it was applied and reported to public health decision-
makers in the Australian context between March and September 2022
(although forecast outputs were produced between December 2021 and
March 2022, we do not consider them in this study as the model received
intensive development throughout that period). Our use of an indepen-
dently produced case forecast as input to the clinicalmodel has allowedus to
take advantage of diverse case forecasting methodologies, and we have
shown how the performance of our clinical forecasts can be evaluated in
terms of the input case forecast performance.

Our results show that forecasting performance was variable over the
study period and dependent upon the epidemiological context. The

15–21 day performance of the ward forecasts was poorest across most
jurisdictions during the transition from Omicron BA.2 dominance to
Omicron BA.4/5 dominance between May and July 2022 (Fig. 5a–h). This
reduced performance can be observed in New South Wales from late May
until early June (Fig. 3a, forecasts 11–14); by late June (forecast 15), a BA.4/5
transmission advantage was included in the mechanistic case forecasting
models14, increasing median predicted occupancy counts but also the
uncertainty across these predictions. Forecasting the burden of infectious
disease during suchvariant transition events has previously beennoted to be
challenging, primarily due to the difficulty in rapidly ascertaining any dif-
ferences in the biological properties of a newvariant and incorporating these
intomodels37,38. These differences could include a change in the virulence of
the pathogen, leading to changes in length of stay, probability of hospital
admission, or probability of ICU admission. However, in the absence of

Fig. 5 | Three week (days 15–21) horizon performance of the ward forecasts for
the forecasts produced between March and September 2022. a–h The forecast
performance over time across the eight states and territories of Australia. Light blue
shading indicates alternating forecast weeks. The true ward occupancy count is
displayed at the top of each panel, with vertical dashed lines indicating dates of
visually distinct peaks and troughs (dotted and dashed lines, respectively) in the time

series. The CRPS and bias of the forecast are displayed below, reflecting the per-
formance of forecasted counts for that date within the 15–21 day forecast horizon.
Upwards bias is displayed in magenta and downwards bias in blue. The CRPS is
calculated over log-transformed counts. Optimal forecasting performance is
achieved where these values are nearest to zero.

https://doi.org/10.1038/s43856-025-01086-0 Article

Communications Medicine |           (2025) 5:349 8

www.nature.com/commsmed


evidence for adifference in virulencebetween theOmicronBA.2 andBA.4/5
variants39, it is most likely that improving our clinical forecasts during this
period would have required adjustments to the underlying case incidence
forecasts.

Accurate prediction near epidemic peaks has previously been recog-
nised to be a particularly difficult problem, both in the context of case
incidence forecasts40–42 and hospital burden forecasts43,44. In our results,
forecasting performance around epidemic peaks varied. Prior to peaks (in
the epidemic growth phase), our forecasts generally performed well,
although they tended to be biased downwards (Fig. 5a–h). Examining
forecasts with start dates in the weeks prior to epidemic peaks (Supple-
mentary Figs. 8 and 9–24), we see that occupancy count at the peak was
generally well captured by forecasts produced one or two weeks prior to the
point of peak occupancy. Forecasts that were produced three weeks prior to
the peak performed comparatively worse, with most predicting that occu-
pancy would continue to grow beyond what eventuated to be the peak.
However, at this three-week horizon, forecasts typically had wide credible
intervals, which appropriately conveyed the uncertainty of our predictions.
During these peak periods, the performance of the forecasts was likely
strongly influenced by the underlying case forecast performance. However,
it is also possible that proactive changes in clinical practice could have led to
reductions in length of stay or hospital admission rates around peak
periods5. Such reductions in these key epidemiological parameters could
only be captured in our model once they were realised in the data used for
estimation. If reductions in length of stay or hospital admission rates
occurred across the forecasting horizon, our forecasts would over-predict
occupancy.

Previously published forecasting models for COVID-19 clinical bur-
den can be broadly categorised into two groups: statistical models and
mechanistic models. Statistical models produce predictions of clinical
burdenby learning patterns in the observeddata, andmay take as input only
the target time series data45–48, or may consider regression against other
observations such as mobility or historical case incidence47–50. In contrast,
mechanistic forecasting models of clinical burden consider the flow of
individuals throughanexplicitly describedmodelof diseaseprogressionand
clinical care pathways. Such mechanistic models may capture the entry of
individuals into the healthcare system through an embedded model of
infection dynamics23,51–54 or through statistical predictions of the entry

process50,55,56. Statistical models may perform as well (or better) than
mechanistic models in some situations; however, one notable advantage of
the mechanistic modelling approach is in allowing for the effect of changes
in epidemiological parameters to be predicted and explained (e.g. a reduc-
tion in patient length of stay)57.

Our work is distinguished from similar mechanistic clinical burden
forecastingmodels through its use of an independently produced forecast of
case incidence as input. This decoupling of the clinical progression model
from the case forecasting models allows for greater separation of concerns
since the development of eachmodel can occur independently58. A potential
disadvantage of this modular approach is that clinical observations cannot
be used to inform the underlying forecasts of infection dynamics, as each
model is fit to data separately. Figure 6a–h demonstrate that the quality of
our occupancy forecasts depends upon the performance of the input case
incidence forecasts (a similar result has beenpreviously reported for amodel
of hospital admissions47), implying that our use of an ensemble case forecast
as input has been advantageous for the performance of our occupancy
forecasts, given ensembles have repeatedly been shown to improve case
forecasting performance43,47,48,59,60.

Our clinical forecasting model is designed to receive outputs from
forecasts of case incidence as a (large) sample of trajectories. However, it has
beenmore common for forecast outputs to be summarised using prediction
intervals, which quantify the probability of outcomes falling within certain
ranges. Examples of this have included the collaborative ensemble forecasts
reported by the US and European COVID-19 forecast hubs43,61. These
prediction intervals are incompatible with ourmethodology as they obscure
the underlying autocorrelation in the case incidence time series—if we were
to sample from such intervals across each day of the forecast, uncertainty in
the cumulative case count would be underestimated. We recommend that
collaborative ensemble forecasts of infectious disease report outputs as
trajectories where possible, so as to enable the appropriate propagation of
uncertainty in further applications (such as that presented here).

Infectious disease forecasting models often exhibit reduced perfor-
mancewhen predicting in low count contexts45,51. In ourwork, we produced
forecasts across low counts of both ward and ICU occupancy, typically
during inter-epidemic periods and in jurisdictions with smaller population
sizes. The performance of our forecasts as measured through CRPS was
worse in these contexts (Fig. 4a–d). However, this is in large part due to the

Fig. 6 | Performance of the ward occupancy forecasts (y-axis) in comparison to
the corresponding ensemble case forecast used as input (x-axis). a–hComparison
of forecast performance between the case forecasts and the ward occupancy

forecasts. Performance is measured using CRPS over log-transformed counts. Each
dot represents performance measured over a 28-day case incidence ensemble fore-
cast and performance measured over a corresponding 21-day occupancy forecast.
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CRPS being calculated over log-transformed counts, effectively making it a
measure of relative error. This would be expected to penalise forecasts
produced in low count contexts, where small absolute changes can produce
large relative differences19. Supplementary Fig. 7 provides further evidence
for this, with some jurisdictions with smaller population sizes, such as
Tasmania and the Northern Territory, performing particularly well when
compared to a naive forecasting model. We also note that the performance
of our occupancy forecasts across these low-count contexts may be of lesser
importance to public health decision-makers, given they are typically (by
definition) distant from capacity constraints.

Since the clinical forecasting model is informed by near-real-time
estimates of key quantities such as probability of hospitalisation and length
of stay, reasonable forecast performance could be expected in the absence of
the approximate Bayesian fitting step. While this occasionally proved to be
true in application (e.g. see Supplementary Methods, where the model
output without fitting captures the reported ward occupancy counts for the
Northern Territory), a few factors may have prevented this from being
generally the case: firstly, we used patient length of stay distributions which
were fit to data from the state of New South Wales and these distributions
may not reflect the clinical practice or realised severity in other jurisdictions;
secondly, the compartmentalmodelweusedmaymiss some components of
hospital occupancy dynamics, such as outbreaks of COVID-19 within
hospitals; thirdly, we assumed that the population which was reported as
hospitalised in the case data was the same population as that reported in the
hospital occupancy figures, which was not always the case due to differing
upstream datasets (e.g. Victoria collected occupancy counts as a separate
census of patients62); finally, our near-real-time estimates of ward and ICU
admission probabilitywere not adjusted for possible right-truncation due to
reporting lags as the date of data entry was not available within the case
dataset we had access to.

Our forecasting methodology did not (explicitly) include the effect of
vaccination upon the clinical trajectory of a COVID-19 case, as linked case
vaccination data were generally unavailable or incomplete during our study
period. These data would be of substantial value, allowing for our key
epidemiological quantities (i.e. the probability of hospitalisation, probability
of ICU admission and length of stay) to be produced with stratification by
vaccination status, andpotentially enabling the production ofmore accurate
forecasts. Data on infections were also limited during our study period, with
no large-scale infection survey performed in Australia during our study
period63 (although a number of sero-surveys were produced10,64–66). Such
infection data would allow us to produce estimates of the infection hospi-
talisation risk, unbiased by changes in the case ascertainment rate.

The measure of hospital burden we chose to forecast—hospital occu-
pancy—has an advantage over incidence measures such as daily hospital
admissions since it directly relates to the capacity of the healthcare system.
However, it has a fewdisadvantages of note. Because hospital occupancy is a
prevalence measure, it is inherently slower to respond to changes in the
epidemic situation than hospital admissions and is, therefore, less useful as
an indicator of changes in epidemic activity. It may also bemore difficult to
measure at the hospital level, given that it requires either accurate
accounting of admissions and discharges or recording of individual patient
stays. Ideally, both admissions and occupancy would be monitored and
reported; in such a context, our model could be easily extended to fit to and
report admission counts, given that admission counts are already recorded
within our simulations.

Throughout the period for which COVID-19 bed occupancy counts
were collected and reported in Australia, no nationally consistent standard
specified which COVID-19 cases should be included in the counts. As a
result, distinct definitions were created and applied across jurisdictions. For
example,duringour studyperiod, the state ofNewSouthWales counted any
patient in hospital who had been diagnosed with COVID-19 either during
their hospital stay orwithin the 14days prior to their admission tohospital67.
This broad definition had the beneficial effect of reducing false negatives in
the counting process but resulted in the inclusion of a large number of
individuals who had since recovered from infection and/or whose stay was

unrelated to the disease (with this effect then being captured in the estimates
of length of stay used in our study). This was in contrast to Victoria, where
COVID-19 cases were counted only until a negative test result was
received62, reducing false positive inclusions but underestimating the total
hospital burden of the disease, given COVID-19 cases may still require
hospital care or be isolated for infection control reasons even when they no
longer test positive. Although these differences would not be expected to
substantially affect the forecast performance given our fitting methodology
(which is able to adjust the probability of hospital admission and patient
length of stay to account for such biases), the development of standard
definitions that could be applied in future epidemics would allow for direct
comparison of counts between jurisdictions and simplify modelling efforts.

The modelling framework we have described here is flexible and not
inherently tied toCOVID-19hospital occupancy as the forecasting target. In
general terms, ourmethod stochastically simulates the convolution of a time
series of case incidence into time series of subsequent outcomes.As such, the
methodology could be applied to other viral respiratory pathogens that lead
to substantial hospital burden, including respiratory syncytial virus (RSV)or
the influenza viruses, both of which are currently the focus of international
forecasting efforts68,69. Further, our framework could be used tomodel other
infectious diseases outcomes, such as absenteeism from the workforce or
long-term sequelae. The efficient simulation and inferencemethodologywe
present allows for forecasts to be produced within a short turnaround time,
with forecasting across the eight states and territories of Australia taking less
than one hour on an eight core virtual machine (AMD EPYC 7702), where
approximately one quarter of this time was dedicated to the pre- and post-
processing of data and results. Our approach is highly amenable to paral-
lelisation (across both individual simulations and the regions we choose to
forecast) and as suchwould be expected to be suitable in applications where
there is a greater number of target regions or outcomes.

We have presented a robust approach for forecasting COVID-19
hospital ward and ICU bed occupancy and have examined the perfor-
mance of this methodology as applied in the Australian context between
March and September 2022. Our forecasting model takes as input an
independently produced forecast of daily case incidence. This incidence
is then transformed into ward and ICU occupancy counts through a
stochastic compartmentalmodel, with the probabilities of hospitalisation
and of ICU admission informed by near-real-time data. Our use of
independently produced forecasts of case incidence has allowed us to
both develop our model independently of the input case forecasting
models and take advantage of the performance benefits provided by
ensemble case forecasts. Our computationally efficient inference method
allowed us to generate forecasts for multiple Australian jurisdictions in
near-real-time, enabling the rapid provision of evidence to public health
decision-makers.

Data availability
Limited data for reproducing the figures presented in this manuscript are
also available at OSF (http://osf.io/5e6ma/, DOI: 10.17605/OSF.IO/
5E6MA70); this includes all model output forecast trajectories, reported
occupancy counts retrieved from covid19data.com.au13, case forecast per-
formance metrics, and Approximate Bayesian Computation diagnostic
plots as produced in the course of producing occupancy forecasts. The
complete line-listed case dataset is not publicly available; for access to the
raw data, a request must be submitted to the Australian Government
Department of Health and Aged Care, which will be assessed by a data
committee independent of authorship group.

Code availability
All code is available archived at OSF (http://osf.io/5e6ma/, DOI: 10.17605/
OSF.IO/5E6MA70). All R code was run using R version 4.1 or greater.
Changes to the model which occurred throughout the study period (which
was limited to jurisdiction-specific modifications to σ2hosp and σ2los and a
correction for New South Wales case data not including cases detected via
rapid antigen test) are described in the Supplementary Methods.
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